Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Neurother ; 23(4): 321-330, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016954

RESUMO

INTRODUCTION: Since the discovery of the presynaptic protein α-synuclein (aSyn) as a central player in Parkinson's disease (PD), several key questions on the function of the protein in neurodegeneration processes remain unclear, including: is there a synergy between dopamine metabolism and the formation of toxic aSyn species in neurons? What is the role of aSyn in the immunological system? AREAS COVERED: Herein, the authors revisit the intricate pathways related to dopamine metabolism and how it impacts on aSyn aggregation/function. Additionally, they discuss the importance of aSyn in the immune response to viral infections as well as the current findings on the possible protective role of certain virus vaccines against PD and other neuropathologies. EXPERT OPINION: The physiological function of aSyn seems to cover different pathways, such as immune response against infections and a neuroprotective role, besides the already-established regulation of synaptic vesicle trafficking. Clinical studies with monoclonal antibodies against aSyn aggregates have shown disappointing results in patients with early-stage PD. Alternatively, we could consider, as immunological target, specific neurotoxic oligomers of aSyn formed in the presence of dopamine metabolites, such as DOPAL. Nevertheless, the crucial question remains as to whether removing these protein deposits will affect the clinical course of the disease.


Assuntos
Doença de Parkinson , Viroses , Humanos , alfa-Sinucleína , Doença de Parkinson/metabolismo , Dopamina , Neurônios/metabolismo , Viroses/patologia
2.
Biochem Biophys Res Commun ; 509(2): 367-372, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30591215

RESUMO

The formation of neurotoxic oligomers of the presynaptic protein α-Synuclein (aSyn) is suggested to be associated with Parkinson's disease neurodegeneration. In this respect, it was demonstrated that the aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), a product from the enzymatic oxidation of dopamine, is capable of stabilizing potentially toxic aSyn oligomers via formation of covalent adducts with Lys residues of the protein. In addition, DOPAL-induced production of reactive oxygen species (ROS) leads to the oxidation of aSyn's Met residues to Met-sulfoxide. Recently, our group pointed out that the pre-oxidation of all-four Met residues of aSyn, upon treatment with H2O2, decreases the formation of large aSyn-DOPAL oligomers, which are suggested to be more toxic to neurons than the corresponding small oligomers (Carmo-Gonçalves et al., Biochem. Biophys. Res. Comm. 505, 295-301. 2018). By using a series of Met to Val mutants of aSyn, we demonstrated that the ability of aSyn to scavenge ROS/H2O2 generated from DOPAL oxidation is primarily dependent on Met residues located at the C-terminal domain of the protein, which contrasts with the reactivity of aSyn against H2O2 itself in which N-terminal Met residues (notably Met5) were more readily oxidized. Interestingly, the substitution of C-terminal Met residues (particularly Met127) by Val increased the formation of DOPAL-induced large oligomers in comparison with the wild-type protein. In this context, we demonstrated that the hydrophobicity of aSyn monomer, which is affected distinctively by the oxidation of N- versus C-terminal methionines, is correlated with the formation of large (but not small) oligomers of aSyn mediated by DOPAL.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Peróxido de Hidrogênio/química , Metionina/química , Valina/química , alfa-Sinucleína/química , Ácido 3,4-Di-Hidroxifenilacético/química , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Substituição de Aminoácidos , Naftalenossulfonato de Anilina/química , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Metionina/metabolismo , Mutação , Oxirredução , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Valina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1862(12): 2835-2845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251672

RESUMO

BACKGROUND: Salsolinol (SALSO), a product from the reaction of dopamine (DA) with acetaldehyde, is found increased in dopaminergic neurons of Parkinson's disease (PD) patients. The administration of SALSO in rats causes myenteric neurodegeneration followed by the formation of deposits of the protein α-synuclein (aS), whose aggregation is intimately associated to PD. METHODS: NMR, isothermal titration calorimetry and MS were used to evaluate the interaction of SALSO with aS. The toxicity of SALSO and in vitro-produced aS-SALSO species was evaluated on mesencephalic primary neurons from mice. RESULTS: SALSO, under oxidative conditions, stabilizes the monomeric state besides a minor population of oligomers of aS, resulting in a strong inhibition of the fibrillation process. SALSO does not promote any chemical modification of the protein. Instead, the interaction of SALSO with aS seems to occur via hydrophobic effect, likely mediated by the NAC (non-amyloid component) domain of the protein. aS-SALSO species were found to be innocuous on primary neurons, while SALSO alone induces apoptosis via caspase-3 activation. Importantly, exogenous aS monomer was capable of protecting neurons against SALSO toxicity irrespective whether the protein was co-administered with SALSO or added until 2 h after SALSO, as evidenced by DAPI and cleaved-caspase 3 assays. Similar protective action of aS was found by pre-incubating neurons with aS before the administration of SALSO. CONCLUSIONS: Interaction of SALSO with aS leads to the formation of fibril-incompetent and innocuous adducts. SALSO toxicity is attenuated by aS monomer. SIGNIFICANCE: aS could exhibit a protective role against the neurotoxic effects of SALSO in dopaminergic neuron.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Isoquinolinas/toxicidade , Sinapses/metabolismo , alfa-Sinucleína/fisiologia , Animais , Apoptose/efeitos dos fármacos , Calorimetria , Caspase 3/metabolismo , Células Cultivadas , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Humanos , Espectrometria de Massas , Camundongos , Oxirredução , Ratos , Espectrometria de Fluorescência , alfa-Sinucleína/metabolismo
4.
Curr Top Med Chem ; 17(4): 489-497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27558674

RESUMO

BACKGROUND: A series of perimidinone derivatives (7H-benzo[e]perimidin-7-one) were synthesized and assessed by means of in vitro assays as human MAO inhibitors. These compounds inhibited reversibly the enzymes with inhibitory constants in the range of 2 to 20 µM. In addition, the selectivity of inhibition of the MAO isoforms seems to be significantly dependent of the presence either of heteroatom or electron donating and withdrawing groups on the perimidinone framework, which was verified by using molecular docking simulation with the crystallized MAO receptors. Most of these inhibitors were highly selective: 9 and 11 inhibited selectively the MAO-B isoform while 12 had 10-fold selectivity for MAO-A isoform. Moreover, the compound 12 was both the most selective and potent MAO-A inhibitor among perimidinones. RESULT: These results have important implications for the drug design of molecules targeting depression and movement-related disorders.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Quinazolinas/farmacologia , Humanos , Cinética , Simulação de Acoplamento Molecular , Quinazolinas/química
5.
J Biol Chem ; 290(46): 27660-79, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26381411

RESUMO

Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Amiloide/química , Dopamina/metabolismo , Lipídeos de Membrana/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/química , Ácido 3,4-Di-Hidroxifenilacético/química , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/toxicidade , Amiloide/metabolismo , Animais , Membrana Celular/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Lisina/química , Lipídeos de Membrana/metabolismo , Oxirredução , Doença de Parkinson/patologia , Ratos , Bases de Schiff/química , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
6.
Bioorg Med Chem Lett ; 24(14): 3194-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835632

RESUMO

Thioflavin-T (ThT) is a cationic benzothiazole dye that displays enhanced fluorescence upon binding to amyloid fibrils. This property makes ThT the current reagent of choice for the quantification of amyloid fibrils. Herein, we investigate the main pitfalls associated with the use of ThT-based assays to monitor the fibrillation of α-synuclein (α-syn), a protein linked to Parkinson's disease and other α-synucleinopathies. We demonstrated for the first time that ThT interacts with α-syn disordered monomer and accelerates the protein fibrillation in vitro. As a consequence, misleading conclusions may arise from the use of ThT-based real-time assays in the evaluation of anti-fibrillogenic compounds. Interestingly, NMR experiments indicated that C-terminal domain of α-syn is the main region perturbed by ThT interaction, similarly to that found for the pesticide paraquat, a well-documented accelerator of α-syn fibrillation. Moreover, we demonstrated that certain potent inhibitors of α-syn fibrillation, such as oxidized catecholamines and polyphenols, undergo spontaneous oxidation in aqueous solution, generating compounds that strongly quench ThT fluorescence. In light of these findings, we alert for possible artifacts associated to the measure of the anti-fibrillogenic activity based only on ThT fluorescence approach.


Assuntos
Amiloide/análise , Amiloide/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/metabolismo , Artefatos , Benzotiazóis , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Tiazóis/análise , Tiazóis/metabolismo , alfa-Sinucleína/química
7.
Chem Biol Drug Des ; 83(4): 401-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24165164

RESUMO

Monoamine oxidase (MAO) action has been involved in the regulation of neurotransmitters levels, cell signaling, cellular growth, and differentiation as well as in the balance of the intracellular polyamine levels. Although so far obscure, MAO inhibitors are believed to have some effect on tumors progression. 1,4-naphthoquinone (1,4-NQ) has been pointed out as a potential pharmacophore for inhibition of both MAO and DNA topoisomerase activities, this latter associated with antitumor activity. Herein, we demonstrated that certain antitumor 1,4-NQs, including spermidine-1,4-NQ, lapachol, and nor-lapachol display inhibitory activity on human MAO-A and MAO-B. Kinetic studies indicated that these compounds are reversible and competitive MAO inhibitors, being the enzyme selectivity greatly affected by substitutions on 1,4-NQ ring. Molecular docking studies suggested that the most potent MAO inhibitors are capable to bind to the MAO active site in close proximity of flavin moiety. Furthermore, ability to inhibit both MAO-A and MAO-B can be potentialized by the formation of hydrogen bonds between these compounds and FAD and/or the residues in the active site. Although spermidine-1,4-NQs exhibit antitumor action primarily by inhibiting topoisomerase via DNA intercalation, our findings suggest that their effect on MAO activity should be taken into account when their application in cancer therapy is considered.


Assuntos
Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/farmacologia , Naftoquinonas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Naftoquinonas/química , Naftoquinonas/farmacologia , Isoformas de Proteínas
8.
FEBS J ; 280(19): 4915-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927048

RESUMO

Fibrillization of the protein α-synuclein (α-syn) is a hallmark of Parkinson's disease and other α-synucleinopathies. The well-established idea that α-syn is a natively disordered monomer prone to forming fibrils was recently challenged by data showing that the protein mostly exists in vitro and in vivo as helically folded tetramers that are resistant to fibrillization. These apparently conflicting findings may be reconciled by the idea that α-syn exists as a disordered monomer in equilibrium with variable amounts of dynamic oligomeric species. In this context, varying the approaches used for protein purification, such as the method used to lyse cells or the inclusion of denaturing agents, could dramatically perturb this equilibrium and hence alter the relative abundance of the disordered monomer. In the present study, we investigated how the current methods for α-syn purification affect the structure and oligomeric state of the protein, and we discuss the main pitfalls associated with the production of recombinant α-syn in Escherichia coli. We demonstrate that α-syn was expressed in E. coli as a disordered monomer independent of both the cell lysis method and the use of heating/acidification for protein purification. In addition, we provide convincing evidence that the disordered monomer exists in equilibrium with a dynamic dimer, which is not an artefact of the cross-linking protocol as previously suggested. Unlike the helically folded tetramer, α-syn dimer is prone to fibrillate and thus it may be an interesting target for anti-fibrillogenic molecules.


Assuntos
Escherichia coli/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Dicroísmo Circular , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Multimerização Proteica
9.
Neurochem Int ; 62(1): 103-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064431

RESUMO

In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson's disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.


Assuntos
Antifibrinolíticos , Neurofibrilas/efeitos dos fármacos , Quinonas/farmacologia , Vitamina K/farmacologia , alfa-Sinucleína/metabolismo , Núcleo Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Naftoquinonas/farmacologia , Vitamina K/análogos & derivados , Vitamina K/química , Vitamina K 1/farmacologia , Vitamina K 2/farmacologia , Vitamina K 3/farmacologia , alfa-Sinucleína/genética
10.
Bioorg Med Chem ; 19(24): 7416-24, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22071524

RESUMO

Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 µM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 µM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 µM) in comparison with MAO-A (K(i)=26 µM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Naftoquinonas/farmacologia , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Animais , Humanos , Cinética , Modelos Moleculares , Monoaminoxidase/química , Naftoquinonas/química , Ligação Proteica , Vitamina K 3/química , Vitaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...